CHROM. 15,157

# LINEAR RETENTION INDEX SYSTEM FOR POLYCYCLIC AROMATIC COMPOUNDS

# CRITICAL EVALUATION AND ADDITIONAL INDICES

DANIEL L. VASSILAROS Midwest Research Institute, 425 Volker Blvd, Kansas City, MO 94110 (U.S.A.) ROBERT C. KONG Department of Chemistry, Brigham Young University, Provo, UT 84602 (U.S.A.) DOUGLAS W. LATER Battelle PNL, Richland, WA 99352 (U.S.A.) and MILTON L. LEE\* Department of Chemistry, Brigham Young University, Provo, UT 84602 (U.S.A.) (Received June 18th, 1982)

# SUMMARY

A linear retention index system for temperature-programmed capillary gas chromatography of polycyclic aromatic compounds using naphthalene, phenanthrene, chrysene, and picene as internal standards has been used in this laboratory for routine analysis since 1979. Conclusions from a data set of 29 routine capillary gas chromatographic analyses of a complex mixture of polycyclic aromatic compounds are used to evaluate, describe, and justify the polycyclic aromatic compound retention index system. The number, width, and linearity of the interpolation intervals are described. The effects on the retention indices of variations in programming rate, column internal diameter, and initial temperature are discussed. The polycyclic aromatic compound retention index system is shown to be a consistent, useful tool for preliminary identification of polycyclic aromatic compounds in complex mixtures. Tables listing standard retention indices for polycyclic aromatic hydrocarbons, polycyclic aromatic sulfur heterocycles, and nitrogen-containing polycyclic aromatic compounds are included.

# INTRODUCTION

Because absolute gas chromatographic (GC) retention is a complicated function of many parameters, and thus useless as a means of reporting and comparing data, various schemes have been devised to normalize retention data. Haken<sup>1</sup> and Ettre<sup>2</sup> have reviewed the development of relative retention concepts and evaluated their application and utility. The most widely applied development is the Kovats retention index (I) system<sup>3</sup>, which is theoretically founded upon the linear relationship between the logarithm of the retention time  $(\log t_R)$  and the carbon number of a homologous series of *n*-alkanes under constant-temperature GC operating conditions. Since its introduction, many scientists have examined, applied, evaluated, and modified the Kovats system<sup>1-9</sup>. Two observations from the literature serve to characterize the Kovats system with respect to its applicability to routine analysis of non-aliphatic hydrocarbon mixtures:

(a) Ettre<sup>2</sup> and Mathiasson *et al.*<sup>7</sup> have shown that the *I* values can be disproportionally affected by selective retardation of the standards or the solutes as the nature and film thickness of the stationary phase change with usage.

(b) The theoretical basis of the Kovats system obviously limits its application to mixtures containing a narrow boiling point range of components<sup>6</sup>. Complex mixtures are laboriously analyzed by isothermal GC at several different temperatures<sup>8</sup>.

The linear relationship between  $\log t_R$  and carbon number does not hold under programmed temperature conditions. Van den Dool and Kratz<sup>10</sup> generalized Kovats' logarithmic formulation to allow calculation of *I* values from chromatographic data generated by temperature programming, assuming a linear relationship between  $t_R$  and carbon number of the standards. Temperature programming is preferred over isothermal operation because narrow peaks are normally obtained throughout the chromatogram and a wide boiling point range of compounds can be chromatographed. This is especially useful when dealing with the analysis of complex environmental mixtures containing several hundred compounds boiling from 80°C to 500°C.

The purposes of this paper are to review the linear I system specifically devised for the qualitative analysis of the polycyclic aromatic compounds  $(PACs)^{11}$ , to support empirically its fundamental assumptions, to make observations based on three years application of the I system to the analysis of PAC mixtures from a variety of samples under a wide range of GC conditions, and to present I values for a large number of PACs, including polycyclic aromatic sulfur heterocycles (PASHs), and nitrogen-containing polycyclic aromatic compounds (N-PAC).

# EXPERIMENTAL

All chromatography was carried out on SE-52 coated fused-silica columns. The columns varied in length from 15 to 20 m, and were either 0.3 mm I.D. (0.25  $\mu$ m film thickness) or 0.2 mm I.D. (0.17  $\mu$ m film thickness). Hydrogen was used as the carrier gas with a linear velocity of 100 cm/sec.

GC was performed using Hewlett-Packard 5880A gas chromatographs equipped with capillary injection systems (operated in the splitless mode) and BASIC programming capability. Unless specifically mentioned, the oven temperature profile was 40°C to 265°C at 4°C/min with a 2-min initial isothermal period. A standard set of all GC operating parameters (attenuation, threshold, baseline, temperature of heated zones, etc.) was stored on tape in an "Analysis" file. Upon retrieval of the "Analysis" file all operating parameters were automatically set to the standard values.

The *I* values were generated from the raw retention data by use of a BASIC program written for the HP 5880 GC and based on the equation of Van den Dool and Kratz<sup>10</sup>. The program calculates *I* values, compares the experimental values with

"standard" indices<sup>11</sup> stored in DATA statements, outputs all calculated I values, and names those peaks whose indices fall within a given tolerance window. Fifty PACs are normally stored in the DATA set for routine analyses, although additional compound names and respective I values could be stored.

The internal standards employed in this particular I system are naphthalene (200.000), phenanthrene (300.000), chrysene (400.000), and picene (500.000). Three of these standards are present in most complex PAC mixtures; picene oftentimes is not. Rather than add picene to the PAC sample being analyzed, a converging algorithm which uses three data points from the chromatogram for the post-run calculation of the  $t_R$  of picene was written and added to the BASIC program. All I values in the region between chrysene and picene (I = 400-500) were generated using a calculated  $t_R$  for picene.

A coal tar sample is used in this laboratory as a standard complex mixture for GC quality control. Compounds in this sample have been identified by GC-mass spectrometry (MS) and by comparison of retention data with standard compounds. *I* values from the coal tar sample have been included in this report as an example of the application of the PAC *I* system to an authentic complex PAC mixture. In addition, *I* values have been measured for 232 standard PACs which contain either a sulfur or nitrogen heteroatom by co-chromatographing standard mixtures with all four PAC internal standards.

# RESULTS AND DISCUSSION

The *I* system for PACs was described by Lee *et al.*<sup>11</sup>, and is based on the internal standards naphthalene, phenanthrene, chrysene, and picene. Although the system has no rigorous foundation in chromatographic thermodynamics and does not assume or require a linear relationship between the retention and ring number of the four internal standards, a linear regression analysis of the retention times of these standards from nine different coal tar chromatograms gave an  $r^2 = 0.9956$ . These four compounds were used as the internal standards instead of the *n*-alkanes<sup>12</sup> to ensure constant elution behavior among solutes and standards under all operating conditions. The following equation, suggested by Van den Dool and Kratz<sup>10</sup>, was used to calculate retention indices:

$$I = 100z + 100 \left[ \frac{t_{R_x} - t_{R_z}}{t_{R_{z+1}} - t_{R_z}} \right]$$
(1)

where z and z + 1 are the numbers of aromatic rings in the bracketing standards.

The ratio inside the brackets in eqn. 1 is a measure of the elution position of compound "x" relative to the interpolation interval between the two standards. Assuming that stationary phase, surface activity, and instrumental conditions affect the elution of all polycyclic aromatic hydrocarbons (PAHs) proportionally, this ratio should be a constant on a given stationary phase, within normal GC operating parameter limits. There are indications that a good correlation of the ratio on a wide polarity range of liquid phases will be obtained<sup>13</sup>.

Fig. 1 is a capillary chromatogram of the coal tar sample. Peak numbers refer to the compound identifications listed in Table I. The I values of many major and



Fig. 1. Capillary gas chromatogram of coal tar sample. Column,  $20 \text{ m} \times 0.20 \text{ mm}$  I.D. SE-52 fused silica; see Experimental section for further details, and Table I for peak identifications.

minor components of this sample from 29 GC analyses over the past year were compiled and statistically evaluated. The average I values, the standard deviations, and the 95% confidence limits of 78 peaks are tabulated. The precision obtained for the compounds listed in Table I is excellent considering the time span over which the data were collected, and the normal variables of different instrument operators and columns of different lengths and inner diameters.

The average, standard deviation, and 95% confidence limits of the width in minutes of the interval between each pair of standards from the 29 coal tar analyses described above were compared with parallel statistical data from ten recent chromatograms of the same coal tar sample obtained within a 2-day period. The differences in the averages from one data set to the other are 0.2 sec, 0.3 sec, and 5 sec, for Regions II (naphthalene-phenanthrene), III (phenanthrene-chrysene), and IV (chrysene-picene), respectively. The interval widths over 39 runs are remarkably constant.

The widths of the interpolation intervals are different, each successive interval being ca. 2 min shorter than the previous one: an index unit in Region II is ca. 10 sec, an index unit in Region III is ca. 9 sec, and an index unit in Region IV is ca. 8 sec. This slight deviation from linearity would have to be taken into account for structure-retention correlation calculations, but has no effect on the analysis of complex mixtures.

The absolute width of the interpolation intervals is a function of the number of internal standards employed. The use of shorter retention windows was evaluated by selecting additional parent PAHs which elute roughly in the middle of each region. The *I* values of at least two peaks in each of the smaller regions were calculated and then compared with the *I* values obtained for the same peaks from the same chromatograms using only the original four retention index standards. Results of this com-

| Г   |  |
|-----|--|
| ш   |  |
|     |  |
| eg. |  |
| ,<  |  |
| _   |  |

RETENTION INDICES FOR COAL TAR PACs

| Compound<br>number | Compound<br>name                | Average I | Standard<br>deviation | 95%<br>confidence<br>limits | Number of<br>determinations |
|--------------------|---------------------------------|-----------|-----------------------|-----------------------------|-----------------------------|
|                    | Naphthalene                     | 200.00    |                       |                             |                             |
| 2                  | Benzolblthiophene               | 201.43    | 0.08                  | $\pm 0.03$                  | 30                          |
| ε                  | 2-Methylnaphthalene             | 220.22    | 0.23                  | $\pm 0.08$                  | 30                          |
| 4                  | 1-Methylnaphthalene             | 223.01    | 0.28                  | $\pm 0.10$                  | 30                          |
| 5                  | Biphenyl                        | 236.44    | 0.19                  | $\pm 0.07$                  | 30                          |
| 9                  | 2-Ethylnaphthalene              | 238.55    | 0.24                  | ±0.11                       | 22                          |
| 7                  | 2,6- or 2,7-Dimethylnaphthalene | 240.28    | 0.22                  | $\pm 0.08$                  | 30                          |
| 8                  | 1,7-Dimethylnaphthalene         | 242.77    | 0.23                  | $\pm 0.09$                  | 29                          |
| 6                  | 1,3- or 1,6-Dimethylnaphthalene | 243.30    | 0.20                  | $\pm 0.10$                  | 18                          |
| 10                 | 2,3- or 1,4-Dimethylnaphthalene | 246.03    | 0.22                  | $\pm 0.09$                  | 23                          |
| 11                 | 1,5-Dimethylnaphthalene         | 246.92    | 0.31                  | $\pm 0.12$                  | 30                          |
| 12                 | Acenaphthylene                  | 246.92    | 0.31                  | $\pm 0.12$                  | 30                          |
| 13                 | 1,2-Dimethylnaphthalene         | 248.50    | 0.26                  | $\pm 0.10$                  | 27                          |
| 14                 | 1,8-Dimethylnaphthalene         | 252*      |                       |                             | 1                           |
| 15                 | Acenaphthene                    | 253.14    | 0.28                  | $\pm 0.10$                  | 30                          |
| 16                 | Methylbiphenyl                  | 255.41    | 0.19                  | $\pm 0.07$                  | 30                          |
| 17                 | 4- or 3-Methylbiphenyl          | 256.69    | 0.20                  | $\pm 0.08$                  | 27                          |
| 18                 | Dibenzofuran                    | 258.77    | 0.24                  | $\pm 0.09$                  | 30                          |
| 19                 | C-3 Naphthalene                 | 261.50    | 0.20                  | $\pm 0.08$                  | 27                          |
| 20                 | C-3 Naphthalene                 | 262.13    | 0.20                  | $\pm 0.08$                  | 28                          |
| 21                 | 2,3,6-Trimethylnaphthalene      | 265.09    | 0.18                  | $\pm 0.07$                  | 27                          |
| 22                 | I-Methylacenaphthylene          | 266.57    | 0.23                  | $\pm 0.09$                  | 29                          |
| 23                 | 2,3,5-Trimethylnaphthalene      | 267.54    | 0.17                  | $\pm 0.07$                  | 28                          |
| 24                 | Fluorene                        | 269.73    | 0.30                  | $\pm 0.11$                  | 30                          |
| 25                 | 9-Methylfluorene                | 273.79    | 0.18                  | $\pm 0.11$                  | 12                          |
| 26                 | 2-Methylfluorene                | 288.42    | 0.15                  | ±0.06                       | 30                          |
| 27                 | I-Methylfluorene                | 289.20    | 0.21                  | $\pm 0.08$                  | 27                          |
| 28                 | Methylfluorene                  | 290.83    | 0.22                  | $\pm 0.08$                  | 30                          |

| Compound<br>number | Compound<br>name                                     | Average I | Standard<br>deviation | 95%<br>confidence<br>limits | Number of<br>determinations |
|--------------------|------------------------------------------------------|-----------|-----------------------|-----------------------------|-----------------------------|
| 29<br>30           | Dibenzothiophene                                     | 295.39    | 0.17                  | $\pm 0.06$                  | 30                          |
| 31                 | r ucuatuu suc<br>Anthracene                          | 301.08    | 0.11                  | +0.04                       | 30                          |
| 32                 | 3-Methylphenanthrene                                 | 319.19    | 0.24                  | $\pm 0.09$                  | 30                          |
| 33                 | 2-Methylphenanthrene                                 | 319.93    | 0.20                  | $\pm 0.08$                  | 30                          |
| 34                 | 4H-Cyclopenta[ <i>de</i> /]phenanthrene              | 321.77    | 0.12                  | $\pm 0.04$                  | 30                          |
| 35                 | 9- or 4-Methylphenanthrene                           | 322.81    | 0.21                  | <u>1</u> 0.08               | 30                          |
| 36                 | 1-Methylphenanthrene                                 | 323.64    | 0.42                  | ±0.16                       | 30                          |
| 37                 | Anthrone                                             | 331.39    | 0.12                  | $\pm 0.04$                  | 30                          |
| 38                 | 2-Phenylnaphthalene                                  | 332.64    | 0.26                  | $\pm 0.10$                  | 29                          |
| 39                 | Fluoranthene                                         | 344.51    | 0.06                  | $\pm 0.02$                  | 30                          |
| 40                 | Acephenanthrylene                                    | 347.67    | 0.08                  | $\pm 0.03$                  | 30                          |
| 41                 | Pyrene                                               | 351.51    | 0.15                  | $\pm 0.06$                  | 30                          |
| 42                 | MW 218**                                             | 353.88    | 0.14                  | $\pm 0.05$                  | 30                          |
| 43                 | MW 218                                               | 356.18    | 0.16                  | $\pm 0.06$                  | 30                          |
| 44                 | MW 218                                               | 358.48    | 0.16                  | $\pm 0.06$                  | 30                          |
| 45                 | MW 218                                               | 361.43    | 0.14                  | $\pm 0.05$                  | 30                          |
| 46                 | Methylfluoranthene or methylacephenanthrylene        | 362.76    | 0.14                  | $\pm 0.05$                  | 30                          |
| 47                 | Methylfluoranthene or methylacephenanthrylene        | 365.42    | 0.14                  | $\pm 0.06$                  | 21                          |
| 48                 | Benzo[a]fluorene                                     | 366.72    | 0.10                  | $\pm 0.04$                  | 30                          |
| 49                 | Benzo[b]fluorene or 4-methylpyrene or 2-methylpyrene | 369.40    | 0.10                  | $\pm 0.04$                  | 30                          |
| 50                 | Methylfluoranthene or methylacephenanthrylene        | 372.49    | 0.10                  | $\pm 0.04$                  | 30                          |
| 51                 | 1-Methylpyrene                                       | 373.45    | 0.13                  | ± 0.05                      | 29                          |
| 52                 | Methylfluoranthene                                   | 374.68    | 0.18                  | $\pm 0.09$                  | 18                          |
| 53                 | Benzo[b]naphtho(2,1-d]thiophene                      | 389.09    | 0.09                  | $\pm 0.03$                  | 30                          |

TABLE I (continued)

| 54      | Benzol ghilthoranthene                                                                                                                                             | 389.92  | 0.11  | $\pm 0.04$ | 30          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|------------|-------------|
| 55      | Benzolclphenanthrene                                                                                                                                               | 391.24  | 0.10  | $\pm 0.04$ | 30          |
| 56      | Benzol $b$ aphtho[1,2- $d$ ]thiophene                                                                                                                              | 392.59  | 0.10  | $\pm 0.04$ | 26          |
| 57      | Benzo[b]naphtho[2,3-d]thiophene                                                                                                                                    | 395.61  | 0.10  | $\pm 0.04$ | 28          |
| 58      | Cyclopental cd pyrene                                                                                                                                              | 396.55  | 0.17  | $\pm 0.07$ | 23          |
| 59      | Benzfalanthracene                                                                                                                                                  | 398.76  | 0.04  | $\pm 0.02$ | 30          |
| 60      | Chrysene                                                                                                                                                           | 400.00  |       |            |             |
| 61      | Triphenylene                                                                                                                                                       | 400.00  |       |            |             |
| 62      | 3-Methylchrysene                                                                                                                                                   | 418.02  | 0.07  | $\pm 0.07$ | 28          |
| 63      | 2-Methylchrysene or 12-methylbenz[a]anthracene                                                                                                                     |         |       |            |             |
|         | or 4-methylbenz[a]anthracene and MW 240***                                                                                                                         | 419.66  | 0.12  | +0.05      | 29          |
| 64      | 5-Methylchrysene                                                                                                                                                   | 420.20* |       |            |             |
| 65      | 6-Methylchrysene or 4-methylchrysene and MW 240                                                                                                                    | 421.25  | 0.09  | $\pm 0.03$ | 28          |
| 66      | 1-Methylchrysene or 7-methylbenzfalanthracene and MW 240                                                                                                           | 422.99  | 0.08  | $\pm 0.08$ | 7           |
| 67      | Benzol/ifftuoranthene or benzol/bilituoranthene                                                                                                                    | 443.13  | 0.11  | $\pm 0.04$ | 29          |
| 68      | Benzolk]fluoranthene                                                                                                                                               | 444.02  | 0.07  | $\pm 0.03$ | 27          |
| 69      | Benzole lovrene <sup>§</sup>                                                                                                                                       | 452.29  |       |            |             |
| 70      | Benzolalpyrene                                                                                                                                                     | 454.02  | 0.07  | $\pm 0.07$ | 30          |
| 71      | Perviene                                                                                                                                                           | 457.17  | 0.06  | $\pm 0.02$ | 30          |
| 72      | Indeno[1.2.3-cd]pyrene                                                                                                                                             | 493.24  | 0.09  | $\pm 0.03$ | 30          |
| 73      | Dibenzla.hlanthracene                                                                                                                                              | 496.20  | 0.30  | $\pm 0.13$ | 24          |
| 74      | Dibenzla.clanthracene                                                                                                                                              | 497.09  | 0.36  | $\pm 0.17$ | 18          |
| 75      | Benzol blchrysene                                                                                                                                                  | 498.90  | 0.23  | $\pm 0.15$ | 13          |
| 76      | Picene                                                                                                                                                             | 500.00  |       |            |             |
| 77      | Benzolghilperylene                                                                                                                                                 | 500.29  | 0.05  | $\pm 0.02$ | 29          |
| 78      | Dibenzoldef, mno]chrysene                                                                                                                                          | 504.10  | 0.11  | $\pm 0.05$ | 21          |
| S * * * | tandard compound; not present in coal tar PAH fraction.<br>ould be methylphenylnaphthalene.<br>ould be evelopentabenz[ <i>a</i> ]anthracene or cyclopentachrysene. |         |       |            |             |
|         |                                                                                                                                                                    |         | • • • |            | - atom done |

LINEAR RETENTION INDEX SYSTEM FOR PACs

7

<sup>8</sup> Standard I of "known" compounds used to calculate t<sub>R</sub> for picene. See text. I determined by co-injection of compound with internal standards.

parison showed no significant improvement in precision or accuracy using the additional internal standards (*i.e.*, shorter intervals).

The GC operating parameters described in the Experimental section were designed for routine analysis of complex PAC mixtures. Subambient operating temperatures are avoided for practical reasons. Under these routine analytical conditions the major variations seen in the PAC I values are caused by differences in initial oven temperature, the temperature programming rate, and the initial isothermal period. Increasing the initial column temperature beyond the point at which naphthalene begins to migrate through the column will lead to decreased I values of the more volatile PACs (naphthalene to 2-methylfluorene). The converse also holds: lower initial temperatures result in increased I values. Subambient temperatures may be necessary to eliminate the dependency of the *I* values in Region II on initial column temperature. The I values of the three- and four-ring compounds are independent of the initial oven temperature at temperatures lower than  $60^{\circ}$ C. With the same carrier gas linear velocity and oven programming parameters (see Experimental section), the I values in the early part of Region II are generally higher with 0.2 mm I.D. columns than with 0.3 mm I.D. columns, a result of decreased solute retention in the largerdiameter columns. Operating the 0.3 mm I.D. column at a lower initial temperature would produce I values similar to those obtained on the 0.2 mm I.D. column. The effect of temperature programming rate on the PAC I values was evaluated on the same columns for rates of 3°C/min to 10°C/min. The more volatile PACs in Region II showed I increases at the faster program rates.

An initial isothermal period is useful for resolving compounds which are only slightly less volatile than the solvent. A 2-min initial time at the injection temperature

| Compound                | 0*      | 1**     | 2***    |
|-------------------------|---------|---------|---------|
| 2-Methylnaphthalene     | 219.507 | 219.945 | 220.454 |
| Biphenyl                | 235.601 | 236.146 | 236.756 |
| Acenaphthylene          | 246.094 | 246.572 | 247.155 |
| Dibenzofuran            | 258.150 | 258.586 | 259.068 |
| Fluorene                | 269.263 | 269.588 | 269.955 |
| Dibenzothiophene        | 295.514 | 295.552 | 295.635 |
| Anthracene              | 301.359 | 301.351 | 301.364 |
| 3-Methylphenanthrene    | 319.442 | 319.417 | 319.468 |
| 1-Methylphenanthrene    | 323.818 | 323.823 | 323.872 |
| Fluoranthene            | 344.432 | 344.439 | 344.471 |
| Acephenanthrylene       | 347.762 | 347.793 | 347.811 |
| Pyrene                  | 351.412 | 351.428 | 351.484 |
| Benzo[a]fluorene        | 366.838 | 366.831 | 366.886 |
| Benzo[b]fluorene        | 369.522 | 369.527 | 369.554 |
| Benzo[b]naphtho[2,1-d]- |         |         |         |
| thiophene               | 389.323 | 389.263 | 389.295 |
| Benzo[ghi]fluoranthene  | 390.129 | 390.075 | 390.106 |

# TABLE II

## EFFECT OF VARIATION OF DURATION OF INITIAL ISOTHERMAL PERIOD ON I

 $\star 0 =$  no initial isothermal period; temperature program started with injection.

\*\* 1 = 1-min isothermal period of initial temperature.

\*\*\* 2 = 2-min isothermal period of initial temperature.

has been a routine part of the temperature program profile in this laboratory, and most retention data reported in this paper include that isothermal contribution. Obviously, the isothermal period prolongs the retention of compounds eluting from naphthalene up to approximately the methylfluorenes (I = 288); this is the reason for the less than exact agreement of the Region II data in this paper and the same data in the original paper<sup>11</sup>. The original work did not include an isothermal period at the start of the GC run. Table II lists the I values for a number of PAHs which elute between naphthalene and phenanthrene, and representative compounds after phenanthrene from three coal tar analyses which had initial isothermal time periods of 0, 1, and 2 min. The I values in the first column are similar to the published values, while the next two columns show an increment in I with increasing initial isothermal time. Although Region II shows significant changes, the other regions do not.

### Compound Coal tar\* Standard $\Delta I_1 ***$ $\Delta I_2^{\$}$ compounds\*\* 2-Methylnaphthalene 220.524 218.14 2.782.901-Methylnaphthalene 223.308 221.04 13.54 12.92 Biphenyl 236.851 233.96 3.88 3.62 2,6-Dimethylnaphthalene 240.726 237.58 2.36 2.87 1,3- and 1,6-Dimethylnaphthalene 243.085 240.45 4.08 4.18 Acenaphthylene 247.167 244.63 1.77 1.86 1,2-Dimethylnaphthalene 248.935 246.49 4.59 4.80 251.29 Acenaphthene 253.528 5.88 5.57 Dibenzofuran 259.096 257.17 10.92 11.00 Fluorene 270.016 268.17 18.87 20.04 2-Methylfluorene 288.886 288.21 6.86 7.60 Dibenzothiophene 295.81 295.746 4.25 4.19 Phenanthrene 300.000 300.00 1.50 1.69 Anthracene 301.495 301.69 18.04 17.77 3-Methylphenanthrene 319.539 319.46

320.290

320.17

TABLE III

2-Methylphenanthrene

COMPARISON OF *d1* UNDER WIDELY VARYING OPERATING CONDITIONS

(Continued on p. 10)

0.71

1.91

0.75

1.73

| Coal tar* | Standard<br>compounds**                                                                                                            | $\Delta I_1^{\star\star\star}$                                                                                                                                                                                                                                                                                                                                                                                     | $\varDelta I_2^{~\$}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 322.018   | 322.08                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           |                                                                                                                                    | 1.18                                                                                                                                                                                                                                                                                                                                                                                                               | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 323.194   | 323.10                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 222.072   | 222.00                                                                                                                             | 0.78                                                                                                                                                                                                                                                                                                                                                                                                               | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 323.972   | 323.90                                                                                                                             | 8 0 <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                       | 8.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 332 890   | 332 59                                                                                                                             | 0.92                                                                                                                                                                                                                                                                                                                                                                                                               | 8.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 552.070   | 552.59                                                                                                                             | 11.56                                                                                                                                                                                                                                                                                                                                                                                                              | 11.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 344.447   | 344.01                                                                                                                             | 11100                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           |                                                                                                                                    | 6.96                                                                                                                                                                                                                                                                                                                                                                                                               | 7.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 351.406   | 351.22                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           |                                                                                                                                    | 15.51                                                                                                                                                                                                                                                                                                                                                                                                              | 15.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 366.917   | 366.74                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 260,502   | 2(0.20                                                                                                                             | 2.67                                                                                                                                                                                                                                                                                                                                                                                                               | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 369.582   | 369.39                                                                                                                             | 10.77                                                                                                                                                                                                                                                                                                                                                                                                              | 10.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |                                                                                                                                    | 19.77                                                                                                                                                                                                                                                                                                                                                                                                              | 19.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 389.353   | 389.26                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5031000   | 007.20                                                                                                                             | 8.67                                                                                                                                                                                                                                                                                                                                                                                                               | 8.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 398.804   | 398.50                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           |                                                                                                                                    | 1.20                                                                                                                                                                                                                                                                                                                                                                                                               | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 400.000   | 400.000                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | Coal tar*<br>322.018<br>323.194<br>323.972<br>332.890<br>344.447<br>351.406<br>366.917<br>369.582<br>389.353<br>398.804<br>400.000 | Coal tar*         Standard compounds**           322.018         322.08           323.194         323.10           323.972         323.90           332.890         332.59           344.447         344.01           351.406         351.22           366.917         366.74           369.582         369.39           389.353         389.26           398.804         398.50           400.000         400.000 | Coal tar*         Standard compounds** $\Delta I_1$ ***           322.018         322.08         1.18           323.194         323.10         0.78           323.972         323.90         8.92           332.890         332.59         11.56           344.447         344.01         6.96           351.406         351.22         15.51           366.917         366.74         2.67           369.582         369.39         19.77           389.353         389.26         8.67           398.804         398.50         1.20 |

# TABLE III (continued)

\* 0.30 mm I.D. column; 4°C/min program.

\*\* Ref. 11.

**\*\*\*** *∆I* from coal tar.

 $^{\$} \Delta I$  from standard compounds.

Table III lists I values obtained recently using the initial 2-min isothermal period and those obtained in the original work<sup>11</sup>. In addition, the difference between each successive pair of indices from each data set is tabulated. It can be seen from these comparisons that the utility of the PAC I values lies not necessarily in the published I values themselves, but possibly in their description of relative elution order and position.

# TABLE IV

COMPARISON OF REGION IV WIDTHS USING ACTUAL AND CALCULATED VALUES FOR PICENE  $t_R\star$ 

| Retention parameter         | Average | Standard<br>deviation | 95% confidence<br>limits |
|-----------------------------|---------|-----------------------|--------------------------|
| $t_R$ Picene (measured)     | 53.521  | 0.020                 | $\pm 0.021$              |
| $t_{R}$ Picene (calc.)      | 53.498  | 0.031                 | $\pm 0.032$              |
| $t_{R}$ Chrysene (measured) | 40.584  | 0.012                 | $\pm 0.013$              |
| $\Delta t_R$ (Measured)     | 12.937  | 0.011                 | $\pm 0.011$              |
| $\Delta t_R$ (Calc.)        | 12.914  | 0.030                 | $\pm 0.031$              |

\* Data in minutes.

| >  |  |
|----|--|
| μ  |  |
| ЗĽ |  |
| R  |  |
|    |  |

RETENTION INDICES OF SULFUR POLYCYCLIC AROMATIC COMPOUNDS

| Compound<br>number | Compound<br>name                         | Average I | Standard<br>deviation | 95%<br>confidence<br>limits | Number of<br>determinations |
|--------------------|------------------------------------------|-----------|-----------------------|-----------------------------|-----------------------------|
| -                  | Benzo[ <i>b</i> ]thiophene               | 201.57    | 0.02                  | + 0.03                      | 4                           |
| 7                  | 7-Methylbenzo[b]thiophene                | 219.16    | 0.02                  | + 0.02                      | 4                           |
| c,                 | 2-Methylbenzo[b]thiophene                | 220.76    | 0.04                  | +0.03                       | - L                         |
| 4                  | 5-Methylbenzo[b]thiophene                | 222.09    | 0.08                  | + 0.09                      | 4                           |
| 5                  | 6-Methylbenzo[b]thiophene                | 222.11    | 0.05                  | +0.09                       | 3                           |
| 6                  | 3-Methylbenzo[b]thiophene                | 223.08    | 0.08                  | +0.05                       | 10                          |
| 7                  | 4-Methylbenzo[6]thiophene                | 223.15    | 0.03                  | $\pm 0.05$                  | 3                           |
| ×                  | 5-Ethylbenzo{b]thiophene                 | 236.14    | 0.04                  | $\pm 0.04$                  | 5                           |
| 6                  | 3,5-Dimethylbenzo[ $b$ ]thiophene        | 243.56    | 0.04                  | $\pm 0.07$                  | ŝ                           |
| 10                 | 1,2,3,4,4a,4b-Hexahydrodibenzothiophene  | 271.69    | 0.04                  | +0.05                       | 4                           |
| 11                 | Naphtho[1,2-b]thiophene                  | 295.80    | 0.03                  | $\pm 0.03$                  | 5                           |
| 12                 | Dibenzothiophene                         | 296.01    | 0.04                  | +0.03                       | 9                           |
| 13                 | Naphtho[2,1-6]thiophene                  | 300.00    |                       | I                           | 3                           |
| 14                 | Naphtho[2,3-b]thiophene                  | 304.47    | 0.08                  | $\pm 0.09$                  | 4                           |
| 15                 | 5-Methylnaphtho[2,1-b]thiophene          | 306.53    | 0.04                  | $\pm 0.05$                  | 4                           |
| 16                 | 2-Mcthylnaphtho[2,1-b]thiophene          | 311.77    | 0.08                  | $\pm 0.06$                  | 7                           |
| 17                 | 4-Methyldibenzothiophene                 | 312.72    | 0.05                  | +0.08                       | ÷                           |
| 18                 | 8-Methylnaphtho[1,2-h]thiophene          | 315.61    | 0.11                  | $\pm 0.09$                  | 9                           |
| 19                 | 2-Methyldibenzothiophene                 | 316.19    | 0.03                  | $\pm 0.05$                  | ť                           |
| 20                 | 3-Methyldibenzothiophene                 | 316.32    | 0.04                  | $\pm 0.08$                  | 3                           |
| 21                 | 4-Methylnaphtho[1,2- $b$ ]thiophene      | 317.19    | 0.16                  | ±0.11                       | 8                           |
| 22                 | 4-Methylnaphtho[2,1-b]thiophene          | 318.12    | 0.12                  | $\pm 0.08$                  | 8                           |
| 23                 | 6-Methylnaphtho[1,2- $b$ ]thiophene      | 319.55    | 0.08                  | $\pm 0.07$                  | 9                           |
| 24                 | 1-Methyldibenzothiophene                 | 319.69    | 0.08                  | $\pm 0.13$                  | 3                           |
| 25                 | 8-Methylnaphtho[2,1-b]thiophene          | 319.86    | 0.05                  | $\pm 0.03$                  | 8                           |
| 26                 | 7-Methylnaphtho[2,1- <i>h</i> ]thiophene | 320.26    | 0.13                  | $\pm 0.11$                  | . 9                         |
| 27                 | 6-Methylnaphtho[2,1-b]thiophene          | 323.57    | 0.05                  | $\pm 0.12$                  | 3                           |
| 28                 | I-Methylnaphtho[2,1-b]thiophene          | 323.58    | 0.10                  | $\pm 0.06$                  | 8                           |
|                    |                                          |           |                       |                             |                             |

| Compound<br>number | Compound<br>name                         | Average I | Standard<br>deviation | 95%<br>confidence | Number of<br>determinations |
|--------------------|------------------------------------------|-----------|-----------------------|-------------------|-----------------------------|
|                    |                                          |           |                       | limits            |                             |
| 29                 | 9-Methvlnaphtho[2.1-b]thiophene          | 325.25    | 0.02                  | $\pm 0.02$        | 7                           |
| 30                 | 3-Ethyldibenzothiophene                  | 328.34    | 0.02                  | $\pm 0.06$        | 3                           |
| 31                 | 4.6-Dimethyldibenzothiophene             | 329.17    | 0.10                  | $\pm 0.25$        | 3                           |
| 32                 | 2,6-Dimethyldibenzothiophene             | 332.42    | 0.15                  | $\pm 0.13$        | e                           |
| 33                 | 2-Ethyldibenzothiophene                  | 332.65    | 0.07                  | $\pm 0.78$        | Э                           |
| 34                 | 3,6-Dimethyldibenzothiophene             | 332.88    | 0.03                  | $\pm 0.05$        | 3                           |
| 35                 | 2,8-Dimethyldibenzothiophene             | 335.90    | 0.04                  | $\pm 0.07$        | 4                           |
| 36                 | 3,7-Dimethyldibenzothiophene             | 336.02    | 0.07                  | $\pm 0.11$        | 4                           |
| 37                 | 3,8-Dimethyldibenzothiophene             | 336.09    | 0.14                  | $\pm 0.25$        | 3                           |
| 38                 | 1,7-Dimethyldibenzothiophene             | 339.36    | 0.06                  | $\pm 0.14$        | 3                           |
| 39                 | Phenanthro[4,5- <i>bcd</i> ]thiophene    | 348.75    | 0.12                  | $\pm 0.05$        | 30*                         |
| 40                 | Phenaleno[6,7-bc]thiophene               | 353.45    | 0.01                  | $\pm 0.01$        | 4                           |
| 41                 | Benzo[b]naphtho[2,1-d]thiophene          | 389.37    | 0.05                  | $\pm 0.06$        | 4                           |
| 42                 | Benzo[b]naphtho[1,2-d]thiophene          | 392.92    | 0.07                  | $\pm 0.08$        | 4                           |
| 43                 | Phenanthro[9,10-b]thiophene              | 394.96    | 0.02                  | $\pm 0.03$        | 4                           |
| 44                 | Phenanthro[4,3-b]thiophene               | 395.03    | 0.05                  | ±0.05             | 5                           |
| 45                 | Anthra[1,2-b]thiophene                   | 395.39    | 0.10                  | $\pm 0.17$        | ÷                           |
| 46                 | Benzo[b]naphtho[2,3-d]thiophene          | 395.97    | 0.24                  | 土0.40             | ŝ                           |
| 47                 | Phenanthro[1,2-b]thiophene               | 396.01    | 0.04                  | $\pm 0.05$        | 4                           |
| 48                 | Phenanthro[3,4-b]thiophene               | 396.43    | 0.07                  | $\pm 0.10$        | 3                           |
| 49                 | Anthra[2,1-b]thiophene                   | 399.31    | 0.01                  | $\pm 0.02$        | 3                           |
| 50                 | Phenanthro[2,1-b]thiophene               | 400.59    | 0.07                  | $\pm 0.13$        | з                           |
| 51                 | Phenanthro[3,2-b]thiophene               | 401.89    | 0.07                  | $\pm 0.06$        | 5                           |
| 52                 | Phenanthrol2,3-b]thiophene               | 402.19    | 0.05                  | $\pm 0.05$        | 5                           |
| 53                 | 1-Methylbenzo[b]naphtho[1,2-d]thiophene  | 402.59    | 0.06                  | $\pm 0.04$        | 8                           |
| 54<br>24           | 11-Methylbenzo[b]naphtho[1,2-d]thiophene | 404.15    | 0.04                  | $\pm 0.03$        | 7                           |
| 55                 | 10-Methylbenzo[b]naphtho[2,1-d]thiophene | 404.28    | 0.06                  | $\pm 0.10$        | 3                           |
| 56                 | 3-Methylbenzo[b]naphtho[2,1-d]thiophene  | 407.55    | 0.10                  | $\pm 0.17$        | Э                           |
| 57                 | Anthra[2,3-b]thiophene                   | 407.57    | 0.10                  | $\pm 0.16$        | 3                           |
| 58                 | 2-Methylbenzo[b]naphtho[2,1-d]thiophene  | 407.63    | 0.08                  | $\pm 0.08$        | 5                           |
| 59                 | 8-Methylbenzo[b]naphtho[2,1-d]thiophene  | 407.69    | 0.09                  | $\pm 0.10$        | 4                           |
| 60                 | 9-Methylbenzo[b]naphtho[2,1-d]thiophene  | 407.93    | 0.08                  | $\pm 0.08$        | 5                           |
| 61                 | 2-Methylbenzo[b]naphtho[1,2-d]thiophene  | 408.00    | 0.03                  | $\pm 0.02$        | 6                           |

12

TABLE V (continued)

|      | 14)  |
|------|------|
|      | d.   |
|      | 0 no |
|      | ed   |
|      | inu  |
|      | nt   |
| en - | Ŭ    |
|      |      |

| 62 | 8-Methylbenzolblnaphtho[1.2-dlthiophene                 | 409.04 | 0.03 | +0.02        | ~   |
|----|---------------------------------------------------------|--------|------|--------------|-----|
| 63 | 10-Methylbenzo[b]naphtho[1,2-a]thiophene                | 409.04 | 0.04 | +0.03 8      | ~~~ |
| 64 | 6-Methylbenzo[ $b$ ]naphtho[ $1,2$ - $d$ ]thiophene     | 409.48 | 0.06 | +0.04        |     |
| 65 | 5-Methylbenzo[ $b$ ]naphtho[2,1- $d$ ]thiophene         | 410.58 | 0.05 | $\pm 0.79$ 3 | ~   |
| 66 | 3-Methylbenzo[ $h$ ]naphtho[ $1, 2$ - $d$ ]thiophene    | 411.48 | 0.04 | ±0.04 5      | 10  |
| 67 | 4-Methylbenzol/b]naphtho[2,3-d]thiophene                | 411.60 | 0.09 | +0.08 6      | 5   |
| 68 | 4-Methylbenzo[b]naphtho[2,1-d]thiophene                 | 411.65 | 0.11 | $\pm 0.13$ 4 | -   |
| 69 | 6-Methylbenzo[b]naphtho[2,1-d]thiophene                 | 411.71 | 0.06 | ±0.05 6      | 5   |
| 70 | 9-Methylbenzo[b]naphtho[1,2-d]thiophene                 | 411.81 | 0.17 | $\pm 0.14$ 6 | 5   |
| 71 | 7-Methylbenzo[h]naphtho[2,1-d]thiophene                 | 412.08 | 0.06 | +0.05 6      |     |
| 72 | 10-Methylbenzo[b]naphtho[2,3-d]thiophene                | 414.26 | 0.06 | ±0.07 4      |     |
| 73 | 9-Methylbenzo[b]naphtho[2,3-d]thiophene                 | 414.62 | 0.05 | $\pm 0.08$ 3 | ~   |
| 74 | 1-Methylbenzo[b]naphtho[2,1-d]thiophene                 | 414.62 | 0.10 | ±0.12 4      | +   |
| 75 | 8-Methylbenzo[ $b$ ]naphtho[ $2,3$ - $d$ ]thiophene     | 414.68 | 0.10 | ±0.12 4      | +   |
| 76 | 2-Methylbenzo[ $b$ ]naphtho[ $2$ , $3$ - $d$ ]thiophenc | 414.69 | 0.09 | +0.08 5      | 10  |
| 77 | 6-Methylbenzo[b]naphtho[2,3-d]thiophene                 | 415.02 | 0.04 | $\pm 0.07$ 3 | ~   |
| 78 | 3-Methylbenzo[ $b$ ]naphtho[ $2$ , $3$ - $d$ ]thiophene | 415.11 | 0.11 | ±0.12 4      | +   |
| 79 | 4-Methylbenzo[ $h$ ]naphtho[ $1, 2$ - $d$ ]thiophene    | 415.41 | 0.09 | ±0.08 5      |     |
| 80 | 1-Methylbenzo[h]naphtho[2,3-d]thiophene                 | 415.54 | 0.09 | $\pm 0.15$ 3 | ~   |
| 81 | 7-Methylbenzo[ $b$ ]naphtho[ $2$ , $3$ - $d$ ]thiophene | 417.07 | 0.09 | $\pm 0.10$ 4 | +   |
| 82 | 3-Methylphenanthro[9,10-b]thiophene                     | 417.70 | 0.05 | ±0.09 3      | ~   |
| 83 | l-Methylanthra[2,1-b]thiophene                          | 418.22 | 0.08 | ±0.07 6      | 5   |
| 84 | 10-Methylphenanthro[2,1-b]thiophene                     | 422.14 | 0.07 | +0.06 6      | 5   |
| 85 | 11-Methylbenzo[b]naphtho[2,3-d]thiophene                | 422.85 | 0.03 | $\pm 0.05$ 3 | ~   |
| 86 | 3-Methylphenanthro[ $2$ , 1- $b$ ]thiophene             | 423.48 | 0.08 | ±0.08 5      | 10  |
| 87 | 2-(2'-Naphthyl)benzo[b]thiophene                        | 430.65 | 0.09 | ±0.09 5      | 10  |
| 88 | Benzo[2,3]phenanthro[4,5- <i>bcd</i> ]thiophene         | 443.29 | 0.06 | ±0.05 5      | 10  |
| 89 | Pyreno[4,5-6]thiophene                                  | 446.51 | 0.05 | $\pm 0.06$ 4 | -   |
| 60 | Benzo[1,2]phenaleno[3,4- <i>bc</i> ]thiophene           | 447.66 | 0.11 | ±0.11 5      | 10  |
| 91 | Triphenyleno[4,5-bcd]thiophene                          | 448.45 | 0.06 | ±0.10 3      | ~   |
| 92 | Pyreno[1,2-b]thiophene                                  | 449.30 | 0.08 | $\pm 0.14$ 3 | ~   |
| 93 | Chryseno[4,5-bcd]thiophene                              | 450.62 | 0.08 | ±0.07 5      | 10  |
| 94 | Pyreno[2,1-b]thiophene                                  | 455.01 | 0.18 | ±0.17 5      | 10  |
| 95 | Benzo[4,5]phenaleno[1,9-bc]thiophene                    | 455.99 | 0.20 | $\pm 0.24$ 4 | -+  |
| 96 | Benzo[4,5]phenaleno[9,1-bc]thiophene                    | 457.30 | 0.16 | ±0.15 5      | 5   |
| 97 | Benzo[ $b$ ]phenanthro[4,3- $d$ ]thiophene              | 470.47 | 0.06 | ±0.07 4      | -   |
| 98 | Dinaphtho[2,1-b: 1',2'-d]thiophene                      | 472.62 | 0.08 | $\pm 0.14$ 3 | ~   |
|    |                                                         |        |      |              | L   |

13

| CompoundCompoundnumbername99Dinaphtho[1,2-b: 2,1'-d]thiophene99Dinaphtho[1,2-b: 1',2'-d]thiophene101Benzo[1,2]phenalthro[9,10-d]thiophene102Benzo[6]phenanthro[9,10-d]thiophene103Benzo[6]phenanthro[2,1-d]thiophene104Anthra[1,2-b]benzo[d]thiophene105Benzo[6]phenanthro[2,1-d]thiophene1069,13-H-Triphenyleno[2,3-d]thiophene1079,13-H-Triphenanthro[3,2-d]thiophene108Benzo[6]phenanthro[1,2-d]thiophene109Benzo[6]phenanthro[2,3-d]thiophene109Benzo[6]phenanthro[1,2-d]thiophene111Triphenyleno[2,1-d]thiophene111Triphenyleno[2,1-d]thiophene                                                                                                                                      | Average I<br>482.60<br>482.99<br>486.58<br>487.32<br>487.76<br>488.45 | Standard<br>deviation<br>0.20<br>0.14<br>0.03<br>0.05 | 95%<br>confidence<br>limits<br>±0.19<br>±0.05<br>±0.16<br>±0.31<br>±0.05 | Number of<br>deviations<br>5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|
| <ul> <li>99 Dinaphtho[1,2-b: 2,1'.d]thiophene</li> <li>100 Benzo[1,2]phenaleno[4,3-bc]thiophene</li> <li>101 Dinaphtho[1,2-b: 1',2'.d]thiophene</li> <li>102 Benzo[b]phenanthro[9,10-d]thiophene</li> <li>103 Anthra[1,2-b]benzo[d]thiophene</li> <li>104 Benzo[b]phenanthro[3,4-d]thiophene</li> <li>105 Dinaphtho[1,2-b: 2',3'-d]thiophene</li> <li>106 9,13-H-Triphenyleno[2,3-b]thiophene</li> <li>108 Benzo[b]phenanthro[3,2-d]thiophene</li> <li>108 Benzo[b]phenanthro[1,2,3'd]thiophene</li> <li>109 Benzo[b]phenanthro[2,3-d]thiophene</li> <li>111 Triphenyleno[2,1-b]thiophene</li> </ul>                                                                                      | 482.60<br>482.99<br>486.58<br>487.32<br>487.76<br>488.45              | 0.20<br>0.05<br>0.14<br>0.03<br>0.05                  | $\pm 0.19$<br>$\pm 0.05$<br>$\pm 0.31$<br>$\pm 0.31$                     | 5                            |
| <ul> <li>Benzel (1.2]phenaleno(4.3-bc]thiophene</li> <li>Dinaphtho[1.2-b: 1'.2'-d]thiophene</li> <li>Benzo[b]phenanthro[9,10-d]thiophene</li> <li>Benzo[b]phenanthro[3,4-d]thiophene</li> <li>Anthra[1,2-b]benzo[d]thiophene</li> <li>Benzo[b]phenanthro[2,1-d]thiophene</li> <li>Dinaphtho[1.2-b; 2'.3'-d]thiophene</li> <li>Dinaphtho[1.2-b; 2'.3'-d]thiophene</li> <li>Benzo[b]phenanthro[2,3-d]thiophene</li> <li>Benzo[b]phenanthro[2,3-d]thiophene</li> <li>Benzo[b]phenanthro[2,3-d]thiophene</li> <li>Benzo[b]phenanthro[2,3-d]thiophene</li> <li>Benzo[b]phenanthro[2,3-d]thiophene</li> <li>Benzo[b]phenanthro[2,3-d]thiophene</li> <li>Triphenyleno[2,1-b]thiophene</li> </ul> | 482.99<br>486.58<br>487.32<br>487.76<br>488.45                        | 0.05<br>0.14<br>0.03<br>0.05                          | $\pm 0.05$<br>$\pm 0.16$<br>$\pm 0.31$<br>$\pm 0.05$                     |                              |
| <ul> <li>101 Dinaphtho[1,2-b: 1',2'-d]thiophene</li> <li>102 Benzo[b]phenanthro[9,10-d]thiophene</li> <li>103 Benzo[b]phenanthro[3,4-d]thiophene</li> <li>104 Anthra[1,2-b]benzo[d]thiophene</li> <li>105 Benzo[b]phenanthro[2,1-d]thiophene</li> <li>106 Dinaphtho[1,2-b: 2',3'-d]thiophene</li> <li>107 9,13-H-Triphenyleno[2,3-d]thiophene</li> <li>108 Benzo[b]phenanthro[3,2-d]thiophene</li> <li>109 Benzo[b]phenanthro[2,3-d]thiophene</li> <li>111 Triphenyleno[2,3-d]thiophene</li> </ul>                                                                                                                                                                                        | 486.58<br>487.32<br>487.76<br>488.45                                  | 0.14<br>0.03<br>0.05                                  | $\pm 0.16$<br>$\pm 0.31$<br>$\pm 0.05$                                   | 5                            |
| <ul> <li>102 Benze[<i>h</i>]phenanthro[9,10-<i>d</i>]thiophene</li> <li>103 Benze[<i>h</i>]phenanthro[3,4-<i>d</i>]thiophene</li> <li>104 Anthra[1,2-<i>h</i>]benze[<i>d</i>]thiophene</li> <li>105 Benze[<i>h</i>]phenanthro[2,1-<i>d</i>]thiophene</li> <li>106 Dinaphtho[1,2-<i>h</i>: 2',3'-<i>d</i>]thiophene</li> <li>107 9,13-<i>H</i>-Triphenyleno[2,3-<i>b</i>]thiophene</li> <li>108 Benze[<i>h</i>]phenanthro[3,2-<i>d</i>]thiophene</li> <li>109 Benze[<i>h</i>]phenanthro[2,3-<i>d</i>]thiophene</li> <li>111 Triphenyleno[2,1-<i>b</i>]thiophene</li> </ul>                                                                                                                 | 487.32<br>487.76<br>488.45                                            | 0.03<br>0.05                                          | $\pm 0.31$<br>$\pm 0.05$                                                 | 4                            |
| <ul> <li>103 Benzo[<i>b</i>]phenanthro[3,4-<i>d</i>]thiophene</li> <li>104 Anthra[1,2-<i>b</i>]benzo[<i>d</i>]thiophene</li> <li>105 Benzo[<i>b</i>]phenanthro[2,1-<i>d</i>]thiophene</li> <li>106 Dinaphtho[1,2-<i>b</i>: 2',3'-<i>d</i>]thiophene</li> <li>107 9,13-<i>H</i>-Triphenyleno[2,3-<i>d</i>]thiophene</li> <li>108 Benzo[<i>b</i>]phenanthro[3,2-<i>d</i>]thiophene</li> <li>109 Benzo[<i>b</i>]phenanthro[1,2-<i>d</i>]thiophene</li> <li>110 Triphenyleno[2,1-<i>b</i>]thiophene</li> </ul>                                                                                                                                                                                | 487.76<br>488.45                                                      | 0.05                                                  | $\pm 0.05$                                                               | 5                            |
| <ul> <li>104 Anthra[1,2-b]benzo[a]thiophene</li> <li>105 Benzo[b]phenanthro[2,1-a]thiophene</li> <li>106 Dinaphtho[1,2-b; 2',3'-a]thiophene</li> <li>107 9,13-H-Triphenyleno[2,3-b]thiophene</li> <li>108 Benzo[b]phenanthro[3,2-a]thiophene</li> <li>109 Benzo[b]phenanthro[2,3-a]thiophene</li> <li>111 Triphenyleno[2,1-b]thiophene</li> </ul>                                                                                                                                                                                                                                                                                                                                         | 488.45                                                                |                                                       |                                                                          | 4                            |
| <ul> <li>Beuzo[b]phenanthro[2,1-d]thiophene</li> <li>Dinaphtho[1,2-h; 2',3'-d]thiophene</li> <li>Dinaphtho[1,2-h; 2',3'-d]thiophene</li> <li>9,13-H-Triphenyleno[2,3-d]thiophene</li> <li>Benzo[b]phenanthro[3,2-d]thiophene</li> <li>Benzo[b]phenanthro[2,3-d]thiophene</li> <li>Triphenyleno[2,1-b]thiophene</li> </ul>                                                                                                                                                                                                                                                                                                                                                                 | 100.001                                                               | 0.08                                                  | $\pm 0.14$                                                               | Э                            |
| <ul> <li>106 Dinaphthol1.2-<i>h</i>: 2',3'-<i>d</i>]thiophene</li> <li>107 9,13-<i>H</i>-Triphenyleno[2,3-<i>b</i>]thiophene</li> <li>108 Benzo[<i>b</i>]phenanthro[3,2-<i>d</i>]thiophene</li> <li>109 Benzo[<i>b</i>]phenanthro[1,2-<i>d</i>]thiophene</li> <li>110 Triphenyleno[2,1-<i>b</i>]thiophene</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      | 488.89                                                                | 0.13                                                  | $\pm 0.23$                                                               | 3                            |
| <ul> <li>107 9,13-H-Triphenyleno[2,3-b]thiophene</li> <li>108 Benzo[b]phenanthro[3,2-d]thiophene</li> <li>109 Benzo[b]phenanthro[1,2-d]thiophene</li> <li>110 Benzo[b]phenyleno[2,1-b]thiophene</li> <li>111 Triphenyleno[2,1-b]thiophene</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      | 489.14                                                                | 0.04                                                  | $\pm 0.05$                                                               | 4                            |
| <ul> <li>108 Benzo[b]phenanthro[3,2-d]thiophene</li> <li>109 Benzo[b]phenanthro[1,2-d]thiophene</li> <li>110 Benzo[b]phenanthro[2,3-d]thiophene</li> <li>111 Triphenyleno[2,1-b]thiophene</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 489.81                                                                | 0.06                                                  | $\pm 0.04$                                                               | 6                            |
| <ul> <li>Benzo[b]phenanthro[1,2-d]thiophene</li> <li>Benzo[b]phenanthro[2,3-d]thiophene</li> <li>Triphenyleno[2,1-b]thiophene</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 491.02                                                                | 0.03                                                  | $\pm 0.05$                                                               | 3                            |
| 110 Benzo[b]phenanthro[2,3-d]thiophene<br>111 Triphenyleno[2,1-b]thiophene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 492.31                                                                | 0.04                                                  | $\pm 0.07$                                                               | e                            |
| 111 Triphenyleno[2,1-b]thiophene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 493.31                                                                | 0.06                                                  | $\pm 0.07$                                                               | 4                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 493.90                                                                | 0.05                                                  | $\pm 0.04$                                                               | 9                            |
| 112 Triphenyleno[1,2-b]thiophene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 494.41                                                                | 0.10                                                  | $\pm 0.10$                                                               | 5                            |
| 113 Dinaphtho[2,3-b: 2',3'-d]thiophene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 495.17                                                                | 0.06                                                  | $\pm 0.06$                                                               | 5                            |
| 114 Triphenylcno[2,3-b]thiophene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500.00                                                                |                                                       |                                                                          | ю                            |
| 115 13-Methylbenzo[b]phenanthro[3,2-d]thiophene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 511.19                                                                | 0.04                                                  | $\pm 0.06$                                                               | ÷                            |

\* Data from coal tar PAH analyses.

14

| 7  |  |
|----|--|
| щ  |  |
| BI |  |
| <  |  |

| AROMATIC COMPOUNDS |  |
|--------------------|--|
| POLYCYCLIC         |  |
| NITROGEN           |  |
| INDICES FOR        |  |
| ETENTION           |  |

| TABLE VI<br>RETENTIOI | N INDICES FOR NITROGEN POLYCYCLIC AROMATIC COMP | OUNDS     |                       |                             |                                               |
|-----------------------|-------------------------------------------------|-----------|-----------------------|-----------------------------|-----------------------------------------------|
| Compound<br>number    | Compound<br>name                                | Average I | Standard<br>deviation | 95%<br>confidence<br>limits | Number of<br>determinations                   |
| -                     | 1-Aminoindan                                    | 207.63    | 0.03                  | + 0.03                      | 6                                             |
| 2                     | Quinoline                                       | 210.26    | 0.26                  | +0.24                       | L                                             |
| 3                     | Isoquinoline                                    | 214.14    | 0.28                  | +0.26                       | 7                                             |
| 4                     | 1-Methylindole                                  | 216.90    | 0.02                  | $\pm 0.03$                  | 4                                             |
| 5                     | Indole                                          | 222.66    | 0.15                  | $\pm 0.24$                  | 4                                             |
| 6                     | 7-Azaindole                                     | 223.70    | 0.05                  | $\pm 0.12$                  | 3                                             |
| 7                     | 2-Methylquinoline                               | 224.13    | 0.10                  | $\pm 0.25$                  | 3                                             |
| 8                     | 8-Methylquinoline                               | 225.18    | 0.01                  | $\pm 0.02$                  | 3                                             |
| 6                     | l-Methylisoquinoline                            | 229.21    | 0.03                  | $\pm 0.05$                  | 4                                             |
| 10                    | 7-Methylquinoline                               | 231.37    | 0.02                  | $\pm 0.05$                  | 3                                             |
| 11                    | 5-Aminoindan                                    | 232.12    | 0.14                  | $\pm 0.22$                  | 4                                             |
| 12                    | 3-Methylquinoline                               | 232.47    | 0.32                  | $\pm 0.40$                  | 5                                             |
| 13                    | 7-Methylindole                                  | 235.49    | 0.05                  | $\pm 0.06$                  | 5                                             |
| 14                    | 4-Methylquinoline                               | 235.77    | 0.04                  | $\pm 0.06$                  | 4                                             |
| 15                    | 3-Methylindole                                  | 239.20    | 0.15                  | $\pm 0.24$                  | 4                                             |
| 16                    | 2-Methylindole                                  | 240.10    | 0.30                  | $\pm 0.37$                  | 5                                             |
| 17                    | 2,7-Dimethylquinoline                           | 244.04    | 0.03                  | $\pm 0.05$                  | 4                                             |
| 18                    | 2,6-Dimethylquinoline                           | 244.19    | 0.27                  | $\pm 0.25$                  | 7                                             |
| 19                    | 1,2-Dimethylindole                              | 244.42    | 0.12                  | $\pm 0.15$                  | 5                                             |
| 20                    | 2,2'-Bipyridyl                                  | 247.15    | 0.15                  | $\pm 0.24$                  | 4                                             |
| 21                    | 2,4-Dimethylquinoline                           | 247.96    | 0.06                  | $\pm 0.15$                  | 3                                             |
| 22                    | 4-Azabiphenyl                                   | 252.35    | 0.03                  | $\pm 0.05$                  | 4                                             |
| 23                    | 2,5-Dimethylindole                              | 256.65    | 0.09                  | $\pm 0.14$                  | 4                                             |
| 24                    | I-Cyanonaphthalene                              | 256.75    | 0.37                  | $\pm 0.59$                  | 4                                             |
| 25                    | 2,3-Dimethylindole                              | 257.32    | 0.17                  | $\pm 0.27$                  | 4                                             |
| 26                    | 2-Cyanonaphthalene                              | 260.88    | 0.08                  | $\pm 0.20$                  | 3                                             |
| 27                    | 5-Nitroindan                                    | 261.55    | 0.06                  | $\pm 0.06$                  | 9                                             |
| 28                    | 1-Aminonaphthalene                              | 262.98    | 0.10                  | $\pm 0.16$                  | 4                                             |
|                       |                                                 |           |                       |                             | ··· / max ··································· |

| Compound<br>number | Compound<br>name               | Average I | Standard<br>deviation | 95%<br>confidence<br>limits | Number of<br>determinations |
|--------------------|--------------------------------|-----------|-----------------------|-----------------------------|-----------------------------|
| 29                 | 2-Aminonaphthalene             | 265.53    | 0.11                  | $\pm 0.18$                  | 4                           |
| 30                 | 2,3,5-Trimethylindole          | 273.61    | 0.08                  | $\pm 0.13$                  | 4                           |
| 31                 | 2-Aminobiphenył                | 273.63    | 0.16                  | $\pm 0.25$                  | 4                           |
| 32                 | 1-Nitronaphthalene             | 274.95    | 0.09                  | $\pm 0.09$                  | 6                           |
| 33                 | 4-Azafluorene                  | 279.85    | 0.11                  | $\pm 0.10$                  | 7                           |
| 34                 | 2-Nitronaphthalene             | 280.63    | 0.05                  | $\pm 0.06$                  | 5                           |
| 35                 | 3-Methyl-2-aminonaphthalene    | 283.73    | 0.05                  | ±0.05                       | 6                           |
| 36                 | 2-Nitrobiphenyl                | 290.25    | 0.12                  | $\pm 0.19$                  | 4                           |
| 37                 | Phenazine                      | 294.37    | 0.26                  | $\pm 0.32$                  | 5                           |
| 38                 | 4-Aminobiphenyl                | 298.05    | 0.08                  | $\pm 0.13$                  | 4                           |
| 39                 | Benzo[h]quinoline              | 301.94    | 0.07                  | $\pm 0.06$                  | 7                           |
| 40                 | Acridine                       | 304.04    | 0.07                  | $\pm 0.06$                  | 7                           |
| 41                 | Acridan (9,10-dihydroacridine) | 304.11    | 0.08                  | $\pm 0.13$                  | 4                           |
| 42                 | Benzol/Jquinoline              | 307.94    | 0.12                  | $\pm 0.11$                  | 7                           |
| 43                 | Phenanthridine                 | 307.94    | 0.12                  | $\pm 0.11$                  | L                           |
| 44                 | 3-Nitrobiphenyl                | 310.09    | 0.11                  | $\pm 0.12$                  | 9                           |
| 45                 | Carbazole                      | 311.71    | 0.19                  | $\pm 0.24$                  | 5                           |
| 46                 | 4-Nitrobiphenyl                | 314.59    | 0.13                  | +0.21                       | 4                           |
| 47                 | 3-Methylbenzo[f]quinoline      | 320.26    | 0.08                  | $\pm 0.07$                  | 7                           |
| 48                 | 2-Methylbenzo[/]quinoline      | 320.50    | 0.09                  | $\pm 0.14$                  | 4                           |
| 49                 | 2-Methylacridine               | 324.34    | 0.06                  | $\pm 0.06$                  | 7                           |
| 50                 | 1-Methylcarbazole              | 324.45    | 0.17                  | $\pm 0.27$                  | 4                           |
| 51                 | 4-Aminofluorene                | 325.11    | 0.09                  | $\pm 0.09$                  | 9                           |
| 52                 | 1-Aminofluorene                | 327.21    | 0.29                  | $\pm 0.36$                  | 5                           |
| 53                 | 3-Methylcarbazole              | 328.81    | 0.03                  | $\pm 0.04$                  | 5                           |
| 54                 | 3-Aminofluorene                | 329.08    | 0.22                  | $\pm 0.27$                  | 5                           |
| 55                 | 2-Methylcarbazole              | 329.61    | 0.09                  | $\pm 0.14$                  | 4                           |
| 56                 | 9-Methylacridine               | 331.15    | 0.05                  | $\pm 0.08$                  | 4                           |
| 57                 | 4-Methylcarbazole              | 331.88    | 0.03                  | $\pm 0.07$                  | 3                           |
| 58                 | 2-Aminofluorene                | 331.91    | 0.04                  | $\pm 0.06$                  | 4                           |
| 59                 | 6-Phenylquinoline              | 340.84    | 0.06                  | $\pm 0.07$                  | 5                           |
| 60                 | 1,4-Dimethylcarbazole          | 343.16    | 0.03                  | $\pm 0.07$                  | 3                           |
| 61                 | 2-Phenylindole                 | 346.18    | 0.08                  | $\pm 0.10$                  | 5                           |
| 62                 | 1,2-Dimethylcarbazole          | 347.31    | 0.07                  | $\pm 0.11$                  | 4                           |
| 63                 | 2-Azafluoranthene              | 347.39    | 0.14                  | $\pm 0.13$                  | L                           |
| 64                 | 1-Azafluoranthene              | 348.17    | 0.17                  | $\pm 0.21$                  | 5                           |

16

TABLE VI (continued)

4 4 (Continued on p. 18)

| 5                     | 3                 | 33                | 4                   | 9               | 9                   | 9                 | 7           | 4           | 4           | 5                   | 4                 | 4                   | 5                 | 4                            | 4                   | ę                   | 4                 | 5                    | 4                 | 7               | 5                        | 4                      | 4             | 4                          | 5             | 4                 | 4                   | 9             | 3                     | 5             | 4             | 4             | 5             | 5                | 4                           | 4                           |
|-----------------------|-------------------|-------------------|---------------------|-----------------|---------------------|-------------------|-------------|-------------|-------------|---------------------|-------------------|---------------------|-------------------|------------------------------|---------------------|---------------------|-------------------|----------------------|-------------------|-----------------|--------------------------|------------------------|---------------|----------------------------|---------------|-------------------|---------------------|---------------|-----------------------|---------------|---------------|---------------|---------------|------------------|-----------------------------|-----------------------------|
| $\pm 0.02$            | $\pm 0.10$        | $\pm 0.15$        | ±0.22               | $\pm 0.20$      | $\pm 0.18$          | $\pm 0.12$        | $\pm 0.26$  | $\pm 0.08$  | $\pm 0.16$  | $\pm 0.10$          | $\pm 0.02$        | $\pm 0.02$          | $\pm 0.31$        | $\pm 0.16$                   | $\pm 0.70$          | $\pm 0.65$          | $\pm 0.02$        | $\pm 0.63$           | $\pm 0.14$        | $\pm 0.14$      | $\pm 0.22$               |                        | $\pm 0.06$    | $\pm 0.43$                 | $\pm 0.04$    | $\pm 0.68$        | $\pm 0.06$          | $\pm 0.12$    | $\pm 0.32$            | $\pm 0.27$    | $\pm 0.41$    | $\pm 0.19$    | $\pm 0.30$    | $\pm 0.04$       | $\pm 0.02$                  | ± 0.05                      |
| 0.02                  | 0.04              | 0.06              | 0.14                | 0.19            | 0.17                | 0.11              | 0.28        | 0.05        | 0.10        | 0.08                | 0.01              | 0.01                | 0.25              | 0.10                         | 0.44                | 0.26                | 0.01              | 0.51                 | 0.09              | 0.15            | 0.24                     |                        | 0.04          | 0.27                       | 0.03          | 0.43              | 0.04                | 0.11          | 0.13                  | 0.22          | 0.26          | 0.12          | 0.24          | 0.03             | 0.01                        | 0.03                        |
| 348.45                | 350.46            | 350.50            | 351.84              | 353.06          | 353.97              | 357.42            | 357.73      | 357.94      | 362.43      | 362.62              | 362.83            | 362.83              | 363.91            | 363.92                       | 365.60              | 365.80              | 367.45            | 372.84               | 381.51            | 392.60          | 398.65                   | 400.00                 | 401.16        | 402.22                     | 407.18        | 409.63            | 409.97              | 411.49        | 411.89                | 412.31        | 413.83        | 415.39        | 421.48        | 422.56           | 438.32                      | 438.38                      |
|                       |                   |                   |                     |                 |                     |                   |             |             |             |                     |                   |                     |                   |                              |                     |                     |                   |                      |                   |                 |                          |                        |               |                            |               |                   |                     |               |                       |               |               |               |               |                  |                             |                             |
| 1.3-Dimethylcarbazole | 9-Cyanoanthracene | 7-Azafluoranthene | 9-Cyanophenanthrene | 2-Nitrofluorene | 4-Aminophenanthrene | 9-Nitroanthracene | 1-Azapyrene | 4-Azapyrene | 2-Azapyrene | 1-Aminophenanthrene | I-Aminoanthracene | 9-Aminophenanthrene | 9-Aminoanthracene | Benzo[ <i>def</i> ]carbazole | 3-Aminophenanthrene | 2-Aminophenanthrene | 2-Aminoanthracene | 3,5-Diphenylpyridine | 9-Phenylcarbazole | Benz[c]acridine | Benz[ <i>a</i> ]acridine | 1-Azabenz[a]anthracene | 4-Azachrysene | Benzo[ <i>a</i> ]carbazole | l-Azachrysenc | Benzo[b]carbazole | 3-Aminofluoranthene | 2-Azachryscne | Benzo $[c]$ carbazole | 4-Aminopyrene | 2-Aminopyrene | 1-Aminopyrene | I-Nitropyrene | 2,2'-Biquinoline | 7,9-Dimethylbenz[c]acridine | 5.7-Dimethylbenz[a]acridine |
| 65                    | 66                | 67                | 68                  | 69              | 70                  | 71                | 72          | 73          | 74          | 75                  | 76                | 77                  | 78                | 62                           | 80                  | 81                  | 82                | 83                   | 84                | 85              | 86                       | 87                     | 88            | 68                         | 06            | 61                | 92                  | 93            | 94                    | 95            | 96            | 67            | 98            | 66               | 100                         | 101                         |

| Compound<br>number | Compound<br>name                      | Average I | Standard<br>deviation | 95%<br>confidence | Number of<br>determinations |
|--------------------|---------------------------------------|-----------|-----------------------|-------------------|-----------------------------|
|                    |                                       |           |                       | limits            |                             |
| 102                | 7,10-Dimethylbenz[ <i>a</i> ]acridine | 439.46    | 0.12                  | +0.15             | s.                          |
| 103                | 2-Aminobenzo[ $c$ ]phenanthrene       | 450.10    | 0.07                  | $\pm 0.09$        | 5                           |
| 104                | 4-Aminobenzo[ $c$ ]phenanthrene       | 451.51    | 0.09                  | $\pm 0.22$        | 3                           |
| 105                | 10-Azabenzo[a]pyrene                  | 455.40    | 0.39                  | $\pm 0.48$        | 5                           |
| 106                | 6-Aminochrysene                       | 463.19    | 0.08                  | $\pm 0.13$        | 4                           |
| 107                | 9,10,12-Trimethylbenz[a]acridine      | 466.79    | 0.20                  | $\pm 0.32$        | 4                           |
| 108                | Dibenz[ $a,c$ ]phenazine              | 474.08    | 0.02                  | $\pm 0.03$        | 4                           |
| 601                | 5-Aminochrysene                       | 487.88    | 0.26                  | $\pm 0.32$        | 5                           |
| 110                | Dibenz[a,h]acridine                   | 488.55    | 0.29                  | $\pm 0.30$        | 9                           |
| III                | Dibenzo[a,i]carbazole                 | 490.57    | 0.22                  | $\pm 0.35$        | 4                           |
| 112                | Dibenz[ $a$ , $J$ ]acridine           | 490.66    | 0.05                  | $\pm 0.05$        | 9                           |
| 113                | 6-Nitrobenzo[a]pyrene                 | 501.71    | 0.10                  | $\pm 0.25$        | 3                           |
| 114                | Dibenzo[a,g]carbazole                 | 502.30    | 0.49                  | $\pm 1.22$        | e                           |
| 115                | Dibenzo[c,g]carbazole                 | 502.92    | 0.24                  | $\pm 0.38$        | 4                           |
| 116                | 7-Aminobenzo[a]pyrene                 | 511.98    | 0.15                  | $\pm 0.24$        | 4                           |
| 117                | 6-Aminobenzo[a]pyrene                 | 515.66    | 0.13                  | $\pm 0.21$        | 4                           |

TABLE VI (continued)

18

The concept of "routine analysis" implies rapid, simple, and reproducible analytical methodologies. An I system can facilitate routine GC analysis of complex mixtures by providing tentative identifications; however, spiking a complex sample with the internal standards can lead to co-elution problems and will definitely make quantitative determinations of masked or partly resolved peaks impossible. Ideally the internal standards should be indigenous to the sample being analyzed; the advantages of this situation are obvious. PAC samples generally contain relatively large amounts of three of the four PAC I standards. Rather than spiking the fourth standard (picene) into the mixture where it would not be resolved from benzo[ghi]perylene, would mask benzo[b]chrysene, and would interfere with the quantification of both peaks, a converging algorithm was written which uses the  $t_R$  of chrysene and the  $t_R$  and "standard" I of a known compound eluting in Region IV (benzo[e]pyrene is a good candidate) to optimize a calculated  $t_R$  for picene. This calculation assumes proportional elution behavior among all three compounds involved. Evidence supporting this assumption can be seen in Table IV where the average measured  $t_R$  values of chrysene and picene, the average width of the interval between them, the average calculated  $t_{R}$  of picene and respective interval width, and the standard deviations and 95% confidence limits of both intervals are given. The source of the data is six standard mixture analyses under the standard I conditions of this work in which the four PAC I standards and benzo[e]pyrene were present. The interval width between the  $t_R$  of chrysene and the calculated  $t_R$  of picene has three times the standard deviation of the actual width, but the averages vary only by 1.4 sec. Application of the Student's *t*-test suggests that the difference between the two means is statistically insignificant.

The relative nature of the PAC I system makes the statistical considerations in the preceding paragraph trivial. As long as retention data are generated in a consistent manner, it does not matter how the necessary cardinal points are defined; it is simply convenient to design a calculation to give a picene  $t_R$  similar to its actual retention time. All of the Region IV I values from the coal tar PAC data base reported in Table I are based upon a calculated  $t_R$  of picene.

The PAC *I* system has been applied to the analysis of diesel particulate material<sup>14,15</sup>, coal extracts<sup>13</sup>, synthetic fuels<sup>16,17</sup>, tissues and sediments<sup>18–21</sup>, air particulate matter<sup>21</sup>, and combustion effluents<sup>22</sup>. To broaden the applicability of the PAC *I* system, the *I* values of 232 PASHs and N-PACs were generated from standard mixtures, and are given in Tables V and VI, respectively.

It is not reasonable to expect ppm reproducibility from any *I* system within one's own laboratory, let alone from one laboratory to another. The degree of fine control over relevant chromatographic parameters required for that level of precision is simply not presently possible; and each researcher must invest developmental time in the analysis of a "standard" complex mixture in order to become familiar with the variations inherent in his own system. Published *I* values should be presented as good working estimates under given conditions, and should be viewed with the same attitude. Carefully generated linear *I* data provide essential information on elution order and intervals, but the actual numbers should not be expected to be absolute.

# ACKNOWLEDGEMENT

This work was supported by the Department of Energy, Office of Health and Environmental Research, contract number DE-AC02-79EV10237.

# REFERENCES

- 1 J. K. Haken, Advan. Chromatogr., 154 (1976) 367.
- 2 L. S. Ettre, Chromatographia, 6 (1973) 489.
- 3 E. Kovats, Helv. Chim. Acta, 41 (1958) 1915.
- 4 F. J. Heeg, R. Zinburg, H. J. Neu and K. Ballschmiter, Chromatographia, 12 (1979) 451.
- 5 G. Schomburg and G. Dielmann, J. Chromatogr. Sci., 11 (1973) 151.
- 6 J. Albaiges and X. Guerdino, Chromatographia, 13 (1980) 755.
- 7 L. Mathiasson, J. A. Jönsson, Å. M. Olsson and L. Haraldson, J. Chromatogr., 152 (1978) 11.
- 8 H. Borowitzky, PhD Dissertation, Ruhr-Universität Bochum, Bochum, G.F.R., 1981.
- 9 L. Soják and J. A. Rijks, J. Chromatogr., 119 (1976) 505.
- 10 H. Van den Dool and P. Dec. Kratz, J. Chromatogr., 11 (1963) 463.
- 11 M. L. Lee, D. L. Vassilaros, C. M. White and M. Novotny, Anal. Chem., 51 (1979) 768.
- 12 F. Sellier, G. Tersac and G. Guiochon, J. Chromatogr., 219 (1981) 213.
- 13 G. Alexander and I. Hazai, J. Chromatogr., 217 (1981) 19.
- 14 M.-L. Yu and R. A. Hites, Anal. Chem., 53 (1981) 951.
- 15 J. A. Yergey, T. H. Risby and S. S. Lestz, Anal. Chem., 54 (1982) 354.
- 16 C. Willey, M. Iwao, R. N. Castle and M. L. Lee, Anal. Chem., 53 (1981) 400.
- 17 D. W. Later, M. L. Lee, K. D. Bartle, R. C. Kong and D. L. Vassilaros, Anal. Chem., 53 (1981) 1612.
- 18 D. L. Vassilaros, P. W. Stoker, G. M. Booth and M. L. Lee, Anal. Chem., 54 (1982) 106.
- 19 D. L. Vassilaros, D. A. Eastmond, W. R. West, M. L. Lee and G. M. Booth, Proc. 6th Int. Symp. on Polynuclear Aromatic Hydrocarbons, Columbus, Ohio, October 27–29, 1981.
- 20 G. V. Graas, J. W. deLeeuw, P. A. Schenk and J. Haverkamp, Geochim. Cosmochim. Acta, 45 (1981) 2465.
- 21 M. L. Lee, D. L. Vassilaros and D. W. Later, Int. J. Environ. Anal. Chem., 11 (1982) 251.
- 22 S. Krishnan and R. A. Hites, Anal. Chem., 53 (1981) 342.